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SO(3,1)-Valued Yang–Mills Fields
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SO(3,1)-valued Yang–Mills fields are constructed on the four-dimensional
manifold M4 5 M2 3 S2, where M2 is a semiinfinite strip. It is shown that these
fields have action proportional to the winding number of S2 and the width of the
strip and satisfy a self-duality relation of the form *F 5 2ig5F. The Einstein
tensor for the metric considered is found to be Gmn 5 3gmn.

In this article, I revise a previous work [1] where SO(3,1) Yang–Mills
fields were constructed on a four-dimensional manifold M4 5 M2 3 S2 and
the action was shown to be proportional to n, the winding number of S2, and
the width of the semiinfinite strip M2. The primary field vector w, however,
there was timelike, and the resulting fields are therefore for tachion fields.
In this work, I take a spacelike vector w and study the resulting fields
accordingly. The results, however, turn out to be very similar.

First I consider SO(3,1)-valued Yang–Mills fields in general. To this
end, consider a four-vector wm, m 5 0, 1, 2, 3. With the flat metric hmn 5
diag(1, 2, 2, 2), denote

w2 5 (w0)2 2
›

w ?
›

w (1)

As the line element, take

ds2 5
4dwm dwn hmn

(1 1 w2)2 (2)

so that we are considering a conformally flat metric. If we further take wm 5
wm(xn), we have

ds2 5 gab dxa dxb (3)
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where

gab 5
4hmn

(1 1 w2)2

­wm

­xa

­wn

­xb (4)

The inverse metric elements are then

gbg 5
1
4

(1 1 w2)2 hrs ­xb

­wr

­xg

­ws (5)

which satisfy gabgbg 5 dg
a. Now define the Dirac algebra-valued vector

w 5 wmgm 5 w0g0 2
›

w ?
›

g (6)

where gm are the Dirac matrices

g0 5 g0 5 1I 0
0 2I2, gi 5 2gi 5 1 0 si

2si 0 2 (7)

They satisfy

{gm, gn} 5 2hmnI (8)

[gm, gn] 5 22ismn (9)

where smn are the generators of SO(3,1).
If we take as the gauge potential

A 5
[w, dw]

2(1 1 w2)
(10)

5
2ismn

1 1 w2 wm dwn (11)

from this we obtain the Yang–Mills field

F 5 dA 1 A ∧ A (12)

5
dw ∧ dw
(1 1 w2)2 (13)

5
2ismn

(1 1 w2)2 dwm ∧ dwn (14)

Using the property

1–2 εmnabsab 5 2ig5smn (15)

we find that the duality relation



SO(3,1)-Valued Yang–Mills Fields 509

*F 5 2ig5F (16)

is satisfied by these fields. Here ε0123 5 2ε0123 5 1 and

g5 5 g5 5 10 I
I 02 (17)

In the x space, we have

F 5 1–2 Fab dxa ∧ dxb (18)

where

Fab 5
22ismn

(1 1 w2)2

­wm

­xa

­wn

­xb (19)

Using the relations

[smn, sab] 5 2i(hm[asb]n 2 hn[asb]m) (20)

{smn, sab} 5 2(hm[ahb]nI 1 iεmnabg5) (21)

we find

[Fmn, Fab] 5 gm[aFb]n 2 gn[aFb]m (22)

{Fmn, Fab} 5 21–2 (gm[agb]nI 1 i!2gεmnabg5) (23)

so that Fmn are local representations of SO(3,1) in curved space with metric
gab. We further find

FmnFmn 5 FmngmagnbFab 5 212I (24)

so that the Yang–Mills action is

IYM 5
1
2 # Tr(F ∧ *F ) (25)

5 2
1
4 # !2g Tr(Fmn Fmn) d 4x (26)

5 12 # !2g d 4x (27)

Now make the following parametrization:

w0 5 s cosh t (28)

w1 5
zn 1 zn

1 1 (zz)n s sinh t (29)
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w2 5
i(zn 2 zn)
1 1 (zz)n s sinh t (30)

w3 5
1 2 (zz)n

1 1 (zz)n s sinh t (31)

Here s, t are real parameters with s P [0, `] and t P [0, L], and z P S2 ,
CP1 is a complex parameter. Note that

›
w ?

›
w 5 s2 sinh2t (32)

w2 5 (w0)2 2
›

w ?
›

w 5 s2 (33)

Thus w is a space-like four-vector. This parametrization has a small difference
from the parametrization of ref. 1 that causes a major difference in result.
The small difference is that cosh t and sinh t are merely replaced in the
parametrization. The major difference is that in ref. 1, w2 5 2R2 , 0, while
here, w2 5 s2 . 0. Thus the treatment in ref. 1 is for timelike fields, while
here the treatment is for spacelike fields. The definitions of the gauge potential
A and the Yang–Mills field F in Eqs. (10) and (13) are also modified accord-
ingly. Now with this parametrization the Dirac algebra-valued vector w 5
wmgm can be written as

w 5 sj (34)

where

j 5 1I cosh t 2ŵ sinh t
ŵ sinh t 2I cosh t2 (35)

with

ŵ 5

›
w ?

›
s

.
›

w .
5

1
1 1 (zz)n 11 2 (zz)n 2zn

2zn (zz)n 2 12 (36)

We have

ŵ2 5 I, j2 5 I (37)

Then

dw 5 j ds 1 s dj (38)

[w, dw] 5 2s2j dj (39)
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We obtain

dj 5 1 I sinh t 2ŵ cosh t
ŵ cosh t 2I sinh t 2 dt 1 sinh t10 2I

I 0 2 dŵ (40)

j dj 5 210 ŵ
ŵ 02 dt 2 sinh t1ŵ sinh t I cosh t

I cosh t ŵ sinh t2 dŵ (41)

Further, we obtain

dŵ 5
22n

1 1 (zz)n [lz n21 dz 1 l†zn21 dz] (42)

where l is the matrix given by

l 5
1

1 1 (zz)n 1 zn 21
z2n 2zn2 (43)

and which satisfies the relations

l2 5 0, {l, l†} 5 I, [l, l†] 5 ŵ (44)

ŵl 5 l, ŵl† 5 2l† (45)

From these we also obtain

ŵ dŵ 5
22n

1 1 (zz)n [lz n21dz 2 l†zn21 dz] (46)

Putting these into Eq. (41), we obtain

j dj 5 2b8dt 1
2n sinh t
1 1 (zz)n

3 [( f sinh t 1 f 8 cosh t)zn21dz

1 (2f † sinh t 1 f 8† cosh t) zn21 dz] (47)

where

b 5 1ŵ 0
0 ŵ2, b8 5 g5b 5 10 ŵ

ŵ 02 (48)

f 5 1 l 0
0 l2, f 8 5 g5 f 5 10 l

l 02 (49)

and which satisfy the relations
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f 2 5 f 82 5 0 (50)

[ f, f †] 5 [ f 8, f 8†] 5 b (51)

[ f, f 8†] 5 [ f 8, f †] 5 b8 (52)

{ f, f †} 5 { f 8, f 8†} 5 I (53)

{ f, f 8†} 5 { f 8, f †} 5 g5 (54)

bf 5 f, bf † 5 2f †, f †b 5 f †, fb 5 2f (55)

b8f 5 bf 8 5 f 8, b8f † 5 bf 8† 5 2f 8† (56)

b8f 8 5 f, b8f 8† 5 2f † (57)

b2 5 b82 5 I, bb8 5 b8b 5 g5 (58)

Thus the six fields {b, b8, f, f †, f 8, f 8†} form a representation of flat SO(3,
1) at every point (z, n) of CP1 3 Z+. Further, {b, f, f †} represent the SU(2)
subalgebra of SO(3,1), with b representing the U(1) subalgebra of SU(2) and
the set {b8, f 8, f 8†} representing the coset SO(3, 1)/SU(2). Then we can write
the gauge potential

A 5
[w, dw]

2(1 1 w2)
5

s2

1 1 s2 j dj (59)

as

A 5
2ns2 sinh t

(1 1 s2)[1 1 (zz)n]

3 [( f sinh t 1 f 8 cosh t)zn21 dz 1 (2f † sinh t 1 f 8† cosh t)zn21 dz]

2
s2

1 1 s2 b8dt (60)

Next, for the Yang–Mills field F we have

F 5
dw ∧ dw
(1 1 w2)2 (61)

5
2s

(1 1 s2)2 ds ∧ j dj 1
s2

(1 1 s2)2 dj ∧ dj (62)

so that using Eqs. (40) and (41), we find
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F 5
22s

(1 1 s2)2 b8ds ∧ dt 1
s2

(1 1 s2)2

4n2(zz)n21 sinh2 t
[1 1 (zz)n]2 b dz ∧ dz

1
4ns sinh t

(1 1 s2)2[1 1 (zz)n]

3 [( f sinh t 1 f 8 cosh t)zn21ds ∧ dz

1 (2f † sinh t 1 f 8† cosh t)zn21 ds ∧ dz

1 s( f cosh t 1 f 8 sinh t)zn21 dt ∧ dz

1 s(2f † cosh t 1 f 8† sinh t)zn21 dt ∧ dz] (63)

Now, setting z 5 reiu, with r P [0, `] and u P [0, 2p], we find the line
element given in Eq. (2) as

ds2 5
4

(1 1 s2)2 Fds2 2 s2 dt2 2
4n2r2n22

(1 1 r2n)2 s2 sinh2 t (dr2 1 r2du2)G
(64)

so that we have

!2g 5
43s3

(1 1 s2)4

n2r2n21

(1 1 r2n)2 sinh2t (65)

Then the Yang–Mills action given in Eq. (27) is

IYM 5 3 ? 44 #
`

0

s3 ds
(1 1 s2)4 #

L

0

sinh2t dt #
`

0

n2r2n21 dr
(1 1 r2n)2 #

2p

0

du (66)

5 3 ? 44 1
12

1
4

(sinh 2L 2 2L)
n
2

? 2p (67)

5 16np(sinh 2L 2 2L) (68)

At this point, note that the polynomial Pn(z) 5 (z 2 z1)(z 2 z2) . . . (z 2 zn)
is homotopically equivalent to zn, so that we can replace zn with Pn(z) without
altering the results.

Finally, studying the geometrical properties of this metric on a computer,
we obtain the Ricci tensor as

Rmn 5 23gmn (69)

so that the Ricci scalar is

R 5 212 (70)

and the Einstein tensor
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Gmn 5 Rmn 2 1–2 Rgmn (71)

obtains the value

Gmn 5 3gmn (72)

Before concluding this article, I want to remark on its generalizations
to higher dimensions. In refs. 2 and 3, SO(5,1) and SO(9,1) Yang–Mills fields
were considered on the manifolds M6 5 M2 3 S4 and M10 5 M2 3 S8, where
the S4 and S8 instantons were embedded. First, these fields must also be
modified by replacing sinh t and cosh t and by redefining A and F in
accordence with Eqs. (10) and (13) so that we can have a spacelike manifold.
However, the fields that represent flat SO(5,1) and SO(9,1) will remain the
same. Also, in ref. 3, I obtained fields that represent the gauge group SU(3)
3 SU(2) 3 SU(2) 3 U(1) and on the cosets obtained fields that resemble a
family of quarks. I believe all three families of quarks and leptons will emerge
when one considers the 26-dimensional manifold M26 5 M2 3 S8 3 S8 3
S8. How this generalization will be made is an outstanding problem.
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