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SO(3,1)-Valued Yang—Mills Fields
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0O(3,1)-valued Yang—Mills fields are constructed on the four-dimensional
manifold M, = M, X S,, where M, is a semiinfinite strip. It is shown that these
fields have action proportiona to the winding number of S, and the width of the
strip and satisfy a self-duality relation of the form *F = —iysF. The Einstein
tensor for the metric considered is found to be G, = 39,,.

In this article, | revise a previous work [1] where SO(3,1) Yang—Mills
fields were constructed on a four-dimensional manifold M, = M, X S, and
the action was shown to be proportional to n, the winding number of S,, and
the width of the semiinfinite strip M,. The primary field vector w, however,
there was timelike, and the resulting fields are therefore for tachion fields.
In this work, | take a spacelike vector w and study the resulting fields
accordingly. The results, however, turn out to be very similar.

First I consider SO(3,1)-valued Yang—Mills fields in general. To this
end, consider a four-vector w*, . = 0, 1, 2, 3. With the flat metric n,, =
diag(+, —, —, —), denote

- -

w2 = (W% —w - w (1)
As the line element, take
_AdwH dw” m,
ds? = AW 2

so that we are considering a conformally flat metric. If we further take w* =
wH(x*), we have

ds? = g,p dx* dx? (3)
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where

4n,, oW ow’
= s 4
9b = (15 w22 ax o @

The inverse metric elements are then

e ax
oWP ow’

which satisfy g,39®Y = 3. Now define the Dirac algebra-valued vector

g = (1+ W ©

W= Wiy, =Wy — Wy (6)
where y* are the Dirac matrices
Y=Y = (é _0|>, Y=-v= (_%.i %I) 7)
They satisfy
{Ve W} = 2nyl (8)
[Yur W] = —2ioy, )

where o, are the generators of SO(3,1).
If we take as the gauge potential

_ _[w dw]
A 21 + w?) (19
_ —loy, )
“ 1w w dw! (NN
from this we obtain the Yang—Mills field
F=dA+ AOA (12
dw O dw
— W - u 3
(1 + wA? (13)
_ _io-l-"v v
= —(1 WP dw* O dw 14
Using the property
Lerrobg o = —iyso? (15)

we find that the duality relation
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*F = —iyeF
is satisfied by these fields. Here €222 = —¢gy,3 = 1 and

0 |
5 _ —
’y_'YS_(I O)

F = 1F,5 dx* O dx?

In the x space, we have

where

Fo= 20w owow
B L+ w2 ox axP

Using the relations
[0 Tapl = 2(MuOpry — MufaOp)u)
{0 oagt = 2Mpuempn! + 1€40apYs)
we find

[Fuw Fopl = GuiaFep = GuiaFprn

{Fp,w FaB} = _%(gu[agﬁ]vl + iV _gsuvaB'YS)
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(16)

(17)

(18)

(19)

(20)
(21)

(22)
(23)

so that F,, are local representations of SO(3,1) in curved space with metric

Q.- We further find
FLF" = FL0"g"Fp = —12I
so that the Yang—Mills action is

lyw = %fTr(F O*F)
= —ﬂ J=g Tr(F,, F*) d*

12J J—gd%

Now make the following parametrization:
W’ =g cosh T

P+
1+ @

ogsnhrt

(24)

(25)

(26)

(27)

(28)

(29)
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i@ -
2—l+—(zz_)nO'S|nhT (30)

_1-@" .

=15 (mn @) osinht (3D

Here o, T are real parameterswitho e [0, ] andT € [0, A],andz e S, ~
CP, is a complex parameter. Note that

—

W - W = o2 sinh?r (32)
W= (W02 — W - W = g2 (33

Thusw isaspace-like four-vector. This parametrization hasasmall difference
from the parametrization of ref. 1 that causes a major difference in result.
The small difference is that cosh T and sinh T are merely replaced in the
parametrization. The major differenceisthat inref. 1, w?> = —R? < 0, while
here, w? = o2 > 0. Thus the treatment in ref. 1 is for timelike fields, while
herethetreatment isfor spacelikefields. The definitions of the gauge potential
A and the Yang—Millsfield F in Egs. (10) and (13) are also modified accord-
ingly. Now with this parametrization the Dirac algebra-valued vector w =
Wy, can be written as

W = o§ (34)
where
_(lcosht —wsinhrT
€= (Wsinhq- | cosh T) (35)
with
o w-ee . 1 1-@ 2
VSR T 1A (22)”< 2 (@ - 1) 9
We have
W2 =1, £2 = (37)
Then
dw = £ do + o di (38)

[w, dw] = 202 dE (39)
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We obtain
_(1lsnht —Wcosht . 0o -1\ ..
g = (WCOShT - sinhw)dT " S‘”hT(| o)d"" (40)
(0 W : Wwsinht lcosht) .
£d = _<w o) dr — sinh T(| cosht W sinh T) aw (4D
Further, we obtain
dw = ——20 [1Z"1 dz + 172! dZ] (42)
1+ @
where | is the matrix given by
1 2 -1
i@ (zZ“ —z”) (“43)
and which satisfies the relations
=0, {1, =1, [1,1 =W (44)
W =1, Wit = —IT (45)
From these we also obtain
(46)

My — 2N ronie el
W dw 1+(22)”[|Z dz — 12"+ dZ

Putting these into Eq. (41), we obtain
2nsinh 7
= —bh’ + —
& d¢ b'dr 1+ @

X [(fsinh T + f' cosh 1)2"1dz
+ (—fTsinht + f'T cosh 1) 21 dZ]

where
AT . (0 W
(6 &) vow-i 9
{10 . (0 |
“fo 1) o= o)

and which satisfy the relations

(47)

(48)

(49)
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f2=f2=0 (50)
[ff]=[f,fT7=bh (51)
[f,f1 =[f f]=0 (52)
{f, 0 = {f,§1 =1 (53)

{f, 6T ={f" T} =~ (54)
bf=f  bft=—ftf, fb=f" fo=-f (55
bf=bf’ =f, bft=npf't=—f1 (56)

bf =f  bft=—f' (57)
B=b2=1, bb'=bb=-rs (58)

Thus the six fields {b, b’, f, fT, f’, f'"} form a representation of flat SO(3,
1) at every point (z, n) of CP, X Z*. Further, {b, f, fT} represent the SU(2)
subalgebra of SO(3,1), with b representing the U(1) subalgebra of SU(2) and
the set {b’, f', f'"} representing the coset SO(3, 1)/SU(2). Then we can write
the gauge potential

A= [w, dw] _ o2
20+w?) 1+o

> £ dE (59)

as

_ 2no?sinht
@A+ o)1+ (@D

X [(fsinht + f' cosh 7)2" 1 dz + (—f" sinh 7 + f'* cosh 1)1 dZ]

A

o2
1+ o2

b'dr (60)

Next, for the Yang—Mills field F we have

_ dw Odw

Ty ©D
2
=ﬁda&§dg+ﬁdgﬂdg (62)

so that using Egs. (40) and (41), we find
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_ 2 2(75\—1 gnh2
“a +2<(:2)2 bds Dokt + 7= = [(1ZZ : (2539 .

N 4no sinh T

1+ o)1+ (D1

X [(fsinh T + f’ cosh 1)2" 1do O dz

+ (—ftsinh 7 + f'T cosh 1)2""* do O dz

+ o(fcosht + f' sinh )2 1 dr Odz

+ o(—fTcosht + f'Tsinh 7)2""* dr 0 d7] (63)

Now, setting z = p€e®, with p € [0, =¢] and 6 < [0, 2w], we find the line
element given in Eq. (2) as

F bdzOdz

_ 4 2 242 A L, 2 1 12402
dSZ—(:I_+—o_2)2 do? — o dr _(:|.+—p2n)20 sinh? 1 (dp® + p2d6?)
(64)
so that we have
3.3 2 2n-1
Jog= e T e (65)

1+ od)* (1 + p?)2
Then the Yang—Mills action given in Eq. (27) is

o0 3 A © 2 2n—1 21
|YM=3-44J ﬂj sinhZTdTJ ”p—dpf do  (66)

o 1+ a?)* o o A+ p2")? 0
11,. n
— 3.4 == _ L
3-4 B 4(smh 2A — 2A) > 2 (67)
= 16nmw(sinh 2A — 2A) (68)

At this point, note that the polynomia Py(2) = (z— 2)(z— 2) ... (z— z)
is homotopically equivalent to 2*, so that we can replace Z* with P,(2) without
atering the results.

Finally, studying the geometrical properties of this metric on acomputer,
we obtain the Ricci tensor as

R = —30u (69)
so that the Ricci scalar is
R=-12 (70)
and the Einstein tensor
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Guv = Ruv - %Rgp,v (71)
obtains the value
G = 30w (72)

Before concluding this article, | want to remark on its generalizations
to higher dimensions. Inrefs. 2 and 3, SO(5,1) and SO(9,1) Yang—Millsfields
were considered on the manifolds Mg = M, X S, and Mg = M, X S;, where
the S, and S; instantons were embedded. First, these fields must also be
modified by replacing sinh v and cosh T and by redefining A and F in
accordence with Egs. (10) and (13) so that we can have a spacelike manifold.
However, the fields that represent flat SO(5,1) and SO(9,1) will remain the
same. Also, in ref. 3, | obtained fields that represent the gauge group SU(3)
X SJ(2) X J(2) X U(1) and on the cosets obtained fields that resemble a
family of quarks. | believe all three families of quarksand leptonswill emerge
when one considers the 26-dimensional manifold Myg = M, X S X § X
S. How this generalization will be made is an outstanding problem.
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